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Competition between glassiness and order in a multispin glass
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A mean-field multispin interaction spin glass model is analyzed in the presence of a ferromagnetic coupling.
The static and dynamical phase diagrams contain four phases~paramagnet, spin glass, ordinary ferromagnet,
and glassy ferromagnet! and exhibit reentrant behavior. The glassy ferromagnet phase has anomalous dynami-
cal properties. The results are consistent with a nonequilibrium thermodynamics that has been proposed for
glasses.@S1063-651X~99!51108-2#

PACS number~s!: 75.10.Nr, 64.60.Cn, 75.10.Jm
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Recent work has emphasized the importance of aging
fundamental property of glassy systems and given it a p
cise meaning: While simple average quantities relax re
tively quickly to stationary values, two-time quantities~cor-
relation and response functions! show that the system neve
truly equilibrates. Whenever the separation between the
times is comparable with the age of the system or grea
time translational invariance is violated and the fluctuatio
dissipation relation~FDR! is modified. These effects are
direct consequence of trapping in metastable attractors,
the modified FDR gives information about the overlap d
tribution of these attractors. This has been demonstrated
plicitly for several soluble models@1–3#.

However, in all these models the distribution of th
quenched random variables is symmetric, so the metast
attractors lack interesting macroscopic structure. This is
the case in a large variety of systems where biased, tune
trained interactions lead to cooperatively ordered attract
yet this macroscopic ordering competes with signific
quenched randomness and the consequent tendency to
glassiness. Examples of such systems include models fo
current neural networks@4#, error correction algorithms@5#,
combinatorial optimization@6–8#, and proteins@9#, as well
as experimental spin glass materials with ferromagnetic,
tiferromagnetic, or helically ordered phases@10#. Equilib-
rium analyses of many of these have found replica symm
breaking regions, indicative of glassy behavior, in th
phase diagrams, but so far their dynamics have not b
studied.

The purpose of this Rapid Communications is to start
remedy this lack by solving a nontrivial model with bo
spin-glass-like and macroscopic attractors. We demons
that ~i! the ferromagnetic part of the dynamical phase d
gram contains both glassy and ordinary nonglassy reg
~with aging present in the glassy one!, ~ii ! the two-time cor-
relation function in the glassy ferromagnet involves nona
lytic features absent in the zero-field spin glass@3#. The re-
sults are in accord with a proposed nonequilibriu
thermodynamic description of glasses@11–13#.

For the model we discuss, a sphericalp-spin glass@1,14–
16# with a ferromagnetic interaction, we observe several
teresting features of the phase diagrams~Fig. 1!. ~i! For both
statics and dynamics, they contain four phases: parama
spin glass~with zero spontaneous magnetization!, conven-
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tional ferromagnet~nonzero spontaneous magnetization b
no replica symmetry breaking or aging!, and glassy ferro-
magnet ~nonzero spontaneous magnetization with repl
symmetry breaking for statics and aging for dynamics!. All
the phases meet at a multicritical point.~ii ! The critical fer-
romagnetic exchange separating the spin-glass and gl
ferromagnetic regions decreases with increasing temp
tures, so that within a finite band of exchange interact
values there occurs a sequence of phases, with decrea
temperature, of paramagnet, ordinary ferromagnet, gla
ferromagnet and spin glass. This has been a regularly
served feature of experiment~referred to as ‘‘re-entrance’
@10#!, but is not found in equilibrium theory for conventiona
spin-glass models@17#. ~iii ! There is a finite maximum fer-
romagnetic exchange for glassy ferromagnetism even at
temperature for all finitep.2 @18–20#. ~iv! The transition
temperature separating glassy and ordinary ferromagneti
gions first rises and then falls as the ferromagnetic excha
is increased beyond its value at the multicritical poi
thereby indicating re-entrance as the ferromagnetic excha
is increased within an appropriate temperature band, with
sequence paramagnet, ordinary ferromagnet, glassy fe
magnet, and back to ordinary ferromagnet.~v! The peak of
the phase line separating glassy and ordinary ferroma
also marks a boundary between two types of onset of o
step replica symmetry breaking~1RSB!, discontinuous for
smaller ferromagnetic exchange, continuous for larger fe

FIG. 1. Static and dynamic phase diagram for the model w
p54. When different from the dynamical ones, the static ph
boundaries are indicated by bold lines.J0 is the ferromagnetic cou-
pling, andJ is the variance of the spin-glass couplings.
R2460 © 1999 The American Physical Society
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magnetic exchange; cf.@14#. ~vi! Wherever the onset o
1RSB is discontinuous, the dynamical transition tempera
is higher than the static one, as in the limit of zero ferrom
netic interaction@14,15,19#.

We consider a model Hamiltonian

H52 (
i 1, i 2 .., i p

Ji 1i 2 ..i p
Si 1

Si 2
..Si p

2
J0

N (
i j

SiSj2H(
i

Si ,

~1!

with independently distributed random quenchedp-spin in-
teractions of mean zero and varianceJ2p!/2Np21 and non-
random two-spin interactions. The spins are subject to
spherical constraint( iSi

25N. Mean field theory is exact fo
infinite-ranged interactions. The choice of spherical sp
simplifies the resulting self-consistency equations, whilep
.2 ensures that one-step replica-symmetry breaking~1RSB!
is sufficient.

We have studied the model by two complementary
proaches. The first employs the replica formalism and p
mits us to obtain both the equilibrium and dynamical ord
parameters. It is characterized by three order parameters
maximum~self-! overlapq1 , the minimum~mutual! overlap
q0 , the magnetizationM , and the amplitude (12x) of the
self-overlap part of the overlap probability distribution. Th
spherical constraint is ensured by a self-consistently de
mined Lagrange multiplier. Stationarity of the replica fr
energy

F52 1
2 J0M22 1

4 bJ2@12~12x!q1
p2xq0

p#

2HM2 1
2 ~T/x!log@12~12x!q12xq0#

1
~12x!T

2x
log~12q1!1

~M22q0!T

2„12~12x!q12xq0…
~2!

with respect toq0 , q1 , and M yields the self-consistenc
equations

M5~bH1bJ0M !~12q̄!, ~3!

q05m~12q̄!2q0
p211M2, ~4!

q12q05m~12q̄!~12q1!~q1
p212q0

p21!, ~5!

where we have used the shorthandsm5 1
2 pb2J2 and q̄

5xq01(12x)q1 .
For the equilibrium ~static! theory, a fourth self-

consistency condition is provided by requiring that the d
rivative

]F

]x
5

T

2 F 1

x2 log
12q̄

12q1
2

q12q0

x~12q̄!
2

b2J2

2
~q1

p2q0
p!

2
~M22q0!~q12q0!

~12q̄!2 G ~6!

vanish. Equations~3!–~6! are then solved forq0 , q1 , M ,
andx.

To obtain the dynamical order parameters one emplo
instead of Eq.~6!, the marginal stability condition@14,21,22#
re
-

e

s

-
r-
r
the

r-

-

s,

~p21!mq1
p22~12q1!251. ~7!

As in the problem without a ferromagnetic term@14#, this
procedure yields the same order parameters and transi
that we find with our second approach, a direct dynami
analysis.

That treatment starts from the Langevin equation

]Si

]t
52

]H
]Si

2z~ t !Si1h i~ t !, ~8!

whereh i(t) is white noise of temperatureT andz(t) has to
be adjusted to satisfy the spherical constraint. Following a
extending now-standard procedures@23# of introducing a
generating functional, averaging over stochastic noise
quenched disorder, introducing appropriate macrosco
time-dependent quantities and using extremal analysis in
limit N→`, there result self-consistent equations for the
cal correlation functionC(t,t8)5(1/N)( i^Si(t)Si(t8)&, the
local response function G(t,t8)5(1/N)( id^Si(t)&/
dHi(t8)uHi (t8)5H , and the global magnetizationM (t)

5(1/N)( i^Si(t)&:

] tC~ t,t8!52z~ t !C~ t,t8!12G~ t8,t !1bHM ~ t8!

1bJ0M ~ t !M ~ t8!1mE
0

t8
dt1Cp21~ t,t1!G~ t8,t1!

1~p21!mE
0

t

dt1G~ t,t1!Cp22~ t,t1!C~ t1 ,t8!,

~9!

] tG~ t,t8!52z~ t !G~ t,t8!1d~ t2t8!1~p21!m

3E
t8

t

dt1G~ t,t1!Cp22~ t,t1!G~ t1 ,t8!, ~10!

] tM ~ t !52z~ t !M ~ t !1bH1bJ0M ~ t !1~p21!m

3E
0

t

dt1G~ t,t1!Cp22~ t,t1!M ~ t1!. ~11!

Together with the spherical constraintC(t,t)51, Eqs.~9!–
~11! determine the dynamics completely. However, even
J05H50, they have not yet been solved. We concentrate
long times, wherez(t) andM (t) reach stationary values an
a self-consistent solution is possible under the assump
that C(t,t8) andG(t,t8) have time-translation-invariant be
havior for (t2t8)!t8 and simple aging behavior for (t
2t8)@t8 @1#:

C~ t,t8!5Cst~ t2t8!1Cag~ t,t8!, ~12!

G~ t,t8!5Gst~ t2t8!1Gag~ t,t8!, ~13!

where in terms ofl5t8/t, Cag(t,t8)5C(l) and Gag(t,t8)
5G(l)/t, with limiting valuesCst(0)512q1 , Cst(`)50,
C(1)5q1 , andC(0)5q0 . Thus,q1 is the plateau value ofC
reached for 1!t2t8!t8, and q0 is its asymptotic (t→`)
limit. In the stationary regime the conventional fluctuatio
dissipation theorem
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]Cst~ t2t8!

]t8
5TGst~ t2t8! ~ t.t8! ~14!

holds, while in the aging regime one has instead the modi
fluctuation-dissipation relation

]Cag~ t,t8!

]t8
5TeGag~ t,t8!, Te5

T

x
, ~15!

i.e., dC(l)/dl5TeG(l).
At long times the time-derivative terms on the left-ha

sides of Eqs.~9!–~11! can be neglected. The asymptotic s
lution found in this limit for the aging regime admits
reparametrization invariance@24#: if C(t,t8) is a solution, so
is C@h(t),h(t8)#, with h(t) an arbitrary monotonic function
of t. Thus we cannot find the complete time-dependence
C andG from the asymptotic equations alone. Neverthele
we can solve forM , x, q0 , andq1 , finding the same result
as were obtained above by the replica treatment in its ‘‘
namics’’ form. No further assumptions onC and G are
needed to obtain these results.

We restrict ourselves toH50 in this Rapid Communica
tion. Figure 1 shows the phase diagram of the model inT
2J0 space forp54. The general features are not sensitive
p. For sufficiently weak ferromagnetic interactionJ0 , we
find the same results as forJ050: a dynamical
paramagnetic-to-spin glass transition at a temperatureTd and
a static transition at a lower temperatureTg . The spin glass
states~both dynamical and equilibrium! involve 1RSB, with
q05M50, andq1 is discontinuous at the transitions, whe
x→1. ForJ.Td ~Tg for statics!, there is a Curie temperatur
Tc , below which the paramagnetic state is unstable aga
the onset of spontaneous magnetization. For a range of
peratures belowTc this ferromagnetic state has a nonze
spin glass order parameter, but no glassy properties~no RSB
or aging!: q15q0 . However, it is unstable, at low enoug
temperatures and not too largeJ0 , against the formation of a
glassy ferromagnetic state with nonzeroM , q0 , and q1
.q0 ~which implies aging!. Below a temperature-depende
critical value ofJ0 , the ferromagnetism of this state becom
unstable, and one recovers the simple spin glass phase
four phases come together at the pointJ05T5Td ~J05T
5Tg for statics!.

The upper boundary of the glassy ferromagnetic ph
rises asJ0 increases fromTd ~Tg for statics! and reaches a
maximum atJ0 /J5Ap(p21)/2@(p22)/p# (p22)/2. It falls to
T50 at J0 /J5Ap(p21)/2. To the left of the maximum
q12q0 jumps discontinuously andx→1 at the transition~as
in the paramagnetic-to-spin glass transition at smallJ0!. To
the right of the maximum,q12q0 goes continuously to zero
at the transition, wherex,1, and the static and dynamica
boundaries coincide. This part of the boundary is thus
Almeida-Thouless line like that found in the SK model@25#,
though the low-T states are different: here one step of RSB
exact, while full RSB is necessary in the SK model. T
overall shape of the boundary is similar to that in thep-spin
glass in an external field@14,15#, though the relation betwee
the two phase diagrams is not elementary because the o
parameter equations are coupled.
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In the large-p limit, the dynamical small-J0 spin glass
transition temperatureTd approaches a finite limit 1/A2e.
The glassy ferromagnetic phase extends out toJ05Jp/&,
with its maximum temperature, 2Td /Ae achieved atJ0
5Jp/(e&). The static spin glass transition temperatureTg

at smallJ0 goes to zero like 1/Alog p @16#, so the spin glass
phase disappears, but the glassy ferromagnetic phase
mains.

The glassy state is characterized by a plateauC5q1 in the
correlation function, the length of which is age-depende
The behavior near this plateau involves power laws. An
ponenta characterizes the decay at the end of the short-t
regime~the approach to the plateau!: C(t1t,t)[C(t)'q1
1const/ta. Using Eq.~10! in the FDT regime, we find an
equation fora,

G2~12a!

G~122a!
5

~p22!~12q1!

2q1
, ~16!

valid in both glassy ferromagnetic and spin glass phas
Thus,a is independent ofJ0 , sinceq1 is fixed by Eq.~7!.

For J050 the asymptotic dynamical equations have t
exact aging solutionC(l)5ln (0,n,1) @1#, which also
holds forJ0.0 in the spin glass phase. In the glassy fer
magnetic phase,C~l! is nonanalytic forl→1, i.e., at the end
of the plateau and the beginning of the aging regime.
make the AnsatzC(l)512B(12l)b1O@(12l)2b# and
find, using the result~16!, that the exponentb must satisfy

x
G2~11b!

G~112b!
5

G2~12a!

G~122a!
. ~17!

Such an Ansatz was also employed in a different probl
@3#, where the relation~17! was also found. A similar resul
is expected to hold for a spin glass in a field, as well. At t
boundary between the spin glass and glassy ferromagn
phases,b→1, and along the AT line separating the conve
tional and glassy ferromagnetic phasesb→0. Figure 2 shows
lines of constantb for the p53 model.

The system dynamically condenses into glassy sta
characterized byx or the effective temperatureTe5T/x.
They have a configurational entropy~or complexity!
@11,12,26,27# I52(]F/]Te)T5(x2/T)(]F/]x)T , that fol-
lows from Eq.~6!. I is a positive constant in the spin glas
@26#, and, of course, it is zero in the ordinary ferromagnet.
the glassy ferromagnet it interpolates smoothly betwe

FIG. 2. Dynamical phase transition lines~solid! for the model
with p53, and lines of constantb in the glassy ferromagnet.
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these two values, and it vanishes at the transition to the
dinary ferromagnet, whereq0→q1 .

The specific heat, defined as the limit of the energy d
ference between states obtained by rapid quenches to
slightly different temperatures, divided by the temperat
difference, has two terms: C5dU/dT5TdS1 /dT
1TedI/dT @11,12#, with the intravalley entropy given by
S152(]F/]T)Te

, viz.,

S15 1
2 ln~12q1!2 1

4 ~bJ!2@11~p21!q1
p2pq1

p21#.
~18!

This is exactly the entropy of a single TAP valley@26,28#
and describes states that can be reached dynamically at
T. In the spin glass and in the ordinary ferromagnetdI/dT
50, so the specific heat merely follows from the intravall
processes. In the glassy ferromagnet, however,dI/dT,0, so
ev
l,
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r-

-
wo
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ed

the specific heat~as defined here! acquires a~negative! con-
tribution from changes in the shape of the free energy la
scape with temperature.

In summary, we have been able to elucidate explicitly
consequences of the competition between glassiness and
romagnetic ordering in the statistical mechanics and lo
time dynamics of an asymptotically soluble model. We ha
found several features and extended and verified the app
bility of concepts devised for spin glasses. These results
shed useful light on the many other important problems
physics and other fields, where ordering competes w
quenched disorder.

The authors are grateful to A. Cavagna, I. Giardina, a
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Universities of Oxford~J.A.H.! and Leuven~Th.M.N.!, and
at the ICPT, Trieste, is also acknowledged.
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